The Auxiliary equation is,
m² - 2m + 4 = 0
m = [2 ± √(4 – 16)] ∕ 2
m = 1 ± 2√3i/3
m = 1± √3i
complementary function = eˣ [A cos √3x + B sin√3x]
= Aeˣ
[cos √3x+B]
Particular integral=1/(D²-2D+4) e²ˣ cos x
= e²ˣ 1/[(D+2)²-2(D+2)+4] cos
x
= e²ˣ 1/(D²+2D+4)
cos x
= e²ˣ 1/(-1+2D+4)
cos x
= e²ˣ
1/(2D+3)*(2D-3)/(2D-3) cos x
= e²ˣ 1/(4D²-9) 2
sin x- 3cos x
= -e²ˣ/13 [2 sin x-
3cos x]
y = complementary function +
particular integral
y = eˣ [ A cos √3x + B sin √3x] -
e²ˣ/13 [2 sin x – 3 cos x]
No comments:
Post a Comment
thank you for comment