Tuesday, 26 December 2017

solution of differential equation - (D^2 - 2D + 4)y = e^2x cos x.



The Auxiliary equation is,                                                                          
m² - 2m + 4 = 0
m = [2 ± √(4 – 16)] ∕ 2
m = 1 ± 2√3i/3
m = 1± √3i
complementary function = eˣ [A cos √3x + B sin√3x]
                                         = Aeˣ [cos √3x+B]
Particular integral=1/(D²-2D+4) e²ˣ cos x
                            = e²ˣ 1/[(D+2)²-2(D+2)+4] cos x
                            = e²ˣ 1/(D²+2D+4) cos x
                            = e²ˣ 1/(-1+2D+4) cos x
                            = e²ˣ 1/(2D+3)*(2D-3)/(2D-3) cos x
                            = e²ˣ 1/(4D²-9) 2 sin x- 3cos x
                            = -e²ˣ/13 [2 sin x- 3cos x]
y = complementary function + particular integral
y = eˣ [ A cos √3x + B sin √3x] - e²ˣ/13 [2 sin x – 3 cos x]

No comments:

Post a Comment

thank you for comment